
Chapter 5

Continuous mappings on metric

spaces

5.1 Definition and properties of a continuous map-

ping

In the previous sections we studied a single metric space (X, d) and prop-

erties of subsets and sequences in X. Now we consider a pair of metric

spaces (X, dX) and (Y, dY ) and continuous mapping (or function) from X

to Y , denoted

f : X −→ Y

Definition 5.1.1. (Continuous mapping). Let (X, dX) and (Y, dY ) be a

pair of metric spaces. We say that a mapping f : X −→ Y is continuous

at point x0 ∈ X if

∀ε > 0 ∃δ(ε) > 0 such that dX(x, x0) < δ(ε) =⇒ dY (f(x), f(x0)) < ε.

We say f is continuous on a set E ⊂ X if f is continuous at every point

x0 ∈ E.

We first observe that continuous mapping maps convergent sequences

into convergent sequences.
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Theorem 5.1.2. (Continuity preserves convergence). Let (X, dX) and

(Y, dY ) be a pair of metric spaces. A mapping f : X −→ Y is contin-

uous at point x0 ∈ X if and only if for every sequence (xn)n ∈ N ⊂ X it

holds

xn
X−→ x0 =⇒ f(xn)

Y−→ f(x0)

Another important characterisation of continuity involves the inverse

image of open and closed sets.

Proposition 5.1.3. Let (X, dX) and (Y, dY ) be a pair of metric spaces. A

mapping f : X −→ Y is continuous on the space X if and only if one of

the following two equivalent properties hold:

(i) For any open set V ⊂ Y , the preimage set

f−1(V ) = {x ∈ X : f(x) ∈ V }

is an open set in X.

(ii) For any closed set F ⊂ Y , the preimage set

f−1(F ) = {x ∈ X : f(x) ∈ F}

is a closed set in X.

Remark 5.1.4. Note that the forward image of an open set under a contin-

uous mapping might be closed. Consider, for example a function f : R −→
R, f(x) = 0 where R is equipped with the standard metric d(x, y) = |x−y|.
Clearly, f is a continuous function but for any open interval (a, b), the set

f((a, b)) = {0} is a closed set!

Theorem 5.1.5. (Continuity preserved by composition). Let (X, dX), (Y, dY )

and (Z, dZ) be metric spaces. If a mapping f : X −→ Y is continuous at
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point x0 ∈ X and a mapping g : Y −→ Z is continuous at point f(x0) ∈ Y
then the composition mapping g ◦ f : X −→ Z, defined by

(g ◦ f)(x) = g(f(x))

is continuous at point x0 ∈ X.

Example 5.1.6. Let (X, d) be a metric space and z0 ∈ X a fixed point in

X. Then f : X −→ R,

f(x) = (d(x, z0))
2

is continuous function on the space X.

5.2 Continuity and compactness

While continuous functions do not preserve open and closed sets, they

interact well with compact sets.

Theorem 5.2.1. (Continuity preserves compactness). Let (X, dX), (Y, dY )

be a pair of metric spaces. If a mapping f : X −→ Y is continuous on

space X and K ⊂ X is a compact subset of X then the forward image

f(K) = {f(x)|x ∈ X} is a compact subset of Y .

The next result is an extension of the Weierstrass Theorem of Analysis

to general metric spaces.

Theorem 5.2.2. (Maximum principle). Let (X, d) be a metric spaces,

f : X −→ R a continuous function and K ⊂ X a compact subset of X.

Then f is bounded on K, i.e f(K) is a bounded subset of R, and f attains

its maximum and minimum on K, i.e. there are points xmin, xmax ∈ K

such that

f(xmax) = max
x∈K

f(x) and f(xmin) = min
x∈K

f(x)

Remark 5.2.3. All assumptions of the theorem are essential.
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5.3 Further properties of continuous mappings

Theorem 5.3.1. (Arithmetic of continuous functions). Let (X, d) be a

metric space, f, g : X −→ R two functions continuous at a point x0 ∈ X
and λ ∈ R a real number. Then the functions

f + g, λf, f · g

are continuous at x0. In addition, if g(x0) 6= 0 then f
g is continuous at x0.

Remark 5.3.2. In particular, the set of continuous functions f : X −→ R
on a metric space (X, d) is a vector space.

Example 5.3.3. (Polynomials on RN). Denote N0 := N ∪ {0}. An N-

dimensional multiindex is a vector α = (α1, · · · , αN) ∈ NN
0 . The absolute

value of the multi-index is

|α| = α1 + · · ·+ αN .

Given a multi-index α ∈ NN
0 , we define the multi-power function x 7−→ xα

on RN by

xα := xα1
1 · · · · · x

αN

N

Clearly, x 7−→ xα is a continuous function from RN to R. Then for any

collection of multiindexes α(1), · · · , α(k) ∈ NN
0 and coefficients c1, · · · , ck ∈

R, a polynomial pk : RN −→ R is an expression of the form

pk(x) = c1x
α(1)

+ c2x
α(2)

+ · · ·+ ckx
α(k)

.

By Theorem 5.3.1, pk is a continuous function on RN . The degree of pk is

the maximum of the absolute values of the multi-indexes.
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Theorem 5.3.4. Let (X, d) be a metric space. A mapping f : X −→ Rm,

f(x) = (f1(x), · · · , fm(x))

is continuous at x0 ∈ X if and only if each of its components fj : X −→
R, (j = 1, · · · ,m), is a continuous function at x0 ∈ X.

Example 5.3.5. (Matrices as mappings from RN into Rm). Every m×N
matrix

A =


a11 a12 a13 · · · a1N

a21 a22 a23 · · · a2N

· · · · · · · · · · · · · · ·
am1 am2 am3 · · · amN


defines a mapping A : RN −→ Rm, by the formula

x 7−→ Ax.

where Ax is the usual multiplication of a matrix by a vector (from the

right). In the next section we will show that A : RN −→ Rm is a continu-

ous mapping.

Example 5.3.6. (Quadratic functions on RN). Every N ×N matrix

A =


a11 a12 a13 · · · a1N

a21 a22 a23 · · · a2N

· · · · · · · · · · · · · · ·
aN1 aN2 aN3 · · · aNN


defines a quadratic function QA : RN −→ R, by the formula.

QA(x) = x · Ax
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where x · y is the dot product of two vectors. Quadratic functions QA are

also called quadratic forms. A quadratic function QA is a polynomial on

RN of degree two, and hence it is a continuous function on RN .

Example 5.3.7. Consider a quadratic function QA : R3 −→ R,

QA(x) = x21 + 2x22 + 3x23 − 4x1x2 + 6x2x3

Find a symmetric matrix A which generated QA.

5.4 Linear mappings in normed spaces

Definition 5.4.1. (Linear mapping). Let (X, |·|X) and (Y, |·|Y ) be two

normed spaces. We say L : X −→ Y is a linear mapping if for any two

vectors x, y ∈ X and a scalar λ ∈ R:

L(x+ y) = Lx+ Ly

L(λx) = λLx

Instead of linear mapping we often say linear operator.

Notation 5.4.2. For linear mappings we usually do not use the brackets

around a single argument, i.e. we write Lx instead of L(x).

Definition 5.4.3. (Bounded mapping). Let (X, ‖·‖X) and (Y, ‖·‖Y ) be

two normed spaces. We say a linear mapping L : X −→ Y is bounded if

there exists M ≥ 0 such that

‖Lx‖Y ≤M‖x‖X , ∀x ∈ X (5.1)

We shall emphasise that the size of the constant M in Equation (5.1)

may depend on the choice of the norms ‖·‖X and ‖·‖Y .
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Theorem 5.4.4. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be two normed spaces and

L : X −→ Y a linear mapping. Then L is continuous if and only if L is

bounded.

Example 5.4.5. (Matrices as bounded linear mappings). Every m × N

matrix A = (aij) ∈ Rm×N defines a linear mapping A : RN −→ Rm, by the

formula

x 7−→ Ax

It is not difficult to see the mapping A is bounded. For example,

‖Ax‖2 ≤M‖x‖2 ∀x ∈ RN (5.2)

where ‖·‖2 is the Euclidean norm on Rm and RN respectively, and where

M =

(
m∑
i=1

N∑
j=1

|aij|2
) 1

2

Note that the value of the constant M in Equation (5.1) depends on the

choice of the norms in RN and Rm,

Remark 5.4.6. Note that

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij|

we define ‖A‖1 as the infimum of all constants C > 0 such that

‖Ax‖1 ≤ C|x|

Example 5.4.7. (Quadratic functions are continuous). Every N ×N ma-
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trix A = (aij) ∈ RN×N defines the quadratic function

QA(x) = x · Ax

see Example 5.3.6 Using equation (5.2), it is easy to see that QA is con-

tinuous at x0 = 0. Indeed, if ‖xn‖2 −→ 0 then using the Cauchy-Schwarz

inequality and the fact that the linear mapping A is bounded (Example

5.4.5), we obtain

|QA(xn)| = |xn · Axn| ≤ ‖xn‖2‖Axn‖2 ≤M‖xn‖22 −→ 0 = QA(0)

This means that QA is continuous at x0 = 0.

Example 5.4.8. (Integral as a bounded linear function on C([a, b]). Let

C([a, b]) be the vector space of continuous functions f : [a, b] −→ R with

the norm of uniform convergence

‖f‖∞ = max
x∈[a,b]

|f(x)|,

proof that the function I : C([a, b]) −→ R,

I(f) :=

∫ b

a

f(x)dx

is continuous.

Example 5.4.9. (Differentiation as a linear map from C1([a, b]) into C([a, b])).

Let C1([a, b]) be the vector space of continuously differentiable functions

f : [a, b] −→ R. Proof that the mapping

d

dx
: C1([a, b]) −→ C([a, b]);

defined by f 7−→ d
dxf := f ′ is unbounded.
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