Chapter 5

Continuous mappings on metric spaces

5.1 Definition and properties of a continuous mapping

In the previous sections we studied a single metric space (X, d) and properties of subsets and sequences in X. Now we consider a pair of metric spaces (X, d_X) and (Y, d_Y) and continuous mapping (or function) from X to Y, denoted

 $f: X \longrightarrow Y$

Definition 5.1.1. (Continuous mapping). Let (X, d_X) and (Y, d_Y) be a pair of metric spaces. We say that a mapping $f : X \longrightarrow Y$ is continuous at point $x_0 \in X$ if

 $\forall \epsilon > 0 \quad \exists \delta(\epsilon) > 0 \text{ such that } d_X(x, x_0) < \delta(\epsilon) \Longrightarrow d_Y(f(x), f(x_0)) < \epsilon.$

We say f is continuous on a set $E \subset X$ if f is continuous at every point $x_0 \in E$.

We first observe that continuous mapping maps convergent sequences into convergent sequences.

Theorem 5.1.2. (Continuity preserves convergence). Let (X, d_X) and (Y, d_Y) be a pair of metric spaces. A mapping $f : X \longrightarrow Y$ is continuous at point $x_0 \in X$ if and only if for every sequence $(x_n)n \in \mathbb{N} \subset X$ it holds

$$x_n \xrightarrow{X} x_0 \Longrightarrow f(x_n) \xrightarrow{Y} f(x_0)$$

Another important characterisation of continuity involves the inverse image of open and closed sets.

Proposition 5.1.3. Let (X, d_X) and (Y, d_Y) be a pair of metric spaces. A mapping $f : X \longrightarrow Y$ is continuous on the space X if and only if one of the following two equivalent properties hold:

(i) For any open set $V \subset Y$, the preimage set

$$f^{-1}(V) = \{ x \in X : f(x) \in V \}$$

is an open set in X.

(ii) For any closed set $F \subset Y$, the preimage set

$$f^{-1}(F) = \{x \in X : f(x) \in F\}$$

is a closed set in X.

Remark 5.1.4. Note that the forward image of an open set under a continuous mapping might be closed. Consider, for example a function $f : \mathbb{R} \longrightarrow R$, f(x) = 0 where \mathbb{R} is equipped with the standard metric d(x, y) = |x-y|. Clearly, f is a continuous function but for any open interval (a, b), the set $f((a, b)) = \{0\}$ is a closed set!

Theorem 5.1.5. (Continuity preserved by composition). Let $(X, d_X), (Y, d_Y)$ and (Z, d_Z) be metric spaces. If a mapping $f : X \longrightarrow Y$ is continuous at point $x_0 \in X$ and a mapping $g: Y \longrightarrow Z$ is continuous at point $f(x_0) \in Y$ then the composition mapping $g \circ f: X \longrightarrow Z$, defined by

$$(g \circ f)(x) = g(f(x))$$

is continuous at point $x_0 \in X$.

Example 5.1.6. Let (X, d) be a metric space and $z_0 \in X$ a fixed point in X. Then $f: X \longrightarrow \mathbb{R}$,

$$f(x) = (d(x, z_0))^2$$

is continuous function on the space X.

5.2 Continuity and compactness

While continuous functions do not preserve open and closed sets, they interact well with compact sets.

Theorem 5.2.1. (Continuity preserves compactness). Let $(X, d_X), (Y, d_Y)$ be a pair of metric spaces. If a mapping $f : X \longrightarrow Y$ is continuous on space X and $K \subset X$ is a compact subset of X then the forward image $f(K) = \{f(x) | x \in X\}$ is a compact subset of Y.

The next result is an extension of the Weierstrass Theorem of Analysis to general metric spaces.

Theorem 5.2.2. (Maximum principle). Let (X, d) be a metric spaces, $f: X \to \mathbb{R}$ a continuous function and $K \subset X$ a compact subset of X. Then f is bounded on K, i.e f(K) is a bounded subset of \mathbb{R} , and f attains its maximum and minimum on K, i.e. there are points $x_{\min}, x_{\max} \in K$ such that

$$f(x_{max}) = \max_{x \in K} f(x) \text{ and } f(x_{min}) = \min_{x \in K} f(x)$$

Remark 5.2.3. All assumptions of the theorem are essential.

5.3 Further properties of continuous mappings

Theorem 5.3.1. (Arithmetic of continuous functions). Let (X, d) be a metric space, $f, g : X \longrightarrow \mathbb{R}$ two functions continuous at a point $x_0 \in X$ and $\lambda \in \mathbb{R}$ a real number. Then the functions

$$f+g, \qquad \lambda f, \qquad f\cdot g$$

are continuous at x_0 . In addition, if $g(x_0) \neq 0$ then $\frac{f}{g}$ is continuous at x_0 .

Remark 5.3.2. In particular, the set of continuous functions $f : X \longrightarrow \mathbb{R}$ on a metric space (X, d) is a vector space.

Example 5.3.3. (Polynomials on \mathbb{R}^N). Denote $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. An N-dimensional multiindex is a vector $\alpha = (\alpha_1, \dots, \alpha_N) \in \mathbb{N}_0^N$. The absolute value of the multi-index is

$$|\alpha| = \alpha_1 + \dots + \alpha_N.$$

Given a multi-index $\alpha \in \mathbb{N}_0^N$, we define the multi-power function $x \mapsto x^{\alpha}$ on \mathbb{R}^N by

$$x^{\alpha} := x_1^{\alpha_1} \cdot \dots \cdot x_N^{\alpha_N}$$

Clearly, $x \mapsto x^{\alpha}$ is a continuous function from \mathbb{R}^N to \mathbb{R} . Then for any collection of multiindexes $\alpha^{(1)}, \dots, \alpha^{(k)} \in \mathbb{N}_0^N$ and coefficients $c_1, \dots, c_k \in \mathbb{R}$, a polynomial $p_k : \mathbb{R}^N \longrightarrow \mathbb{R}$ is an expression of the form

$$p_k(x) = c_1 x^{\alpha^{(1)}} + c_2 x^{\alpha^{(2)}} + \dots + c_k x^{\alpha^{(k)}}.$$

By Theorem 5.3.1, p_k is a continuous function on \mathbb{R}^N . The degree of p_k is the maximum of the absolute values of the multi-indexes.

Theorem 5.3.4. Let (X, d) be a metric space. A mapping $f : X \longrightarrow \mathbb{R}^m$,

$$f(x) = (f_1(x), \cdots, f_m(x))$$

is continuous at $x_0 \in X$ if and only if each of its components $f_j : X \longrightarrow \mathbb{R}, (j = 1, \dots, m)$, is a continuous function at $x_0 \in X$.

Example 5.3.5. (Matrices as mappings from RN into Rm). Every $m \times N$ matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2N} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mN} \end{pmatrix}$$

defines a mapping $A : \mathbb{R}^N \longrightarrow \mathbb{R}^m$, by the formula

$$x \mapsto Ax.$$

where Ax is the usual multiplication of a matrix by a vector (from the right). In the next section we will show that $A : \mathbb{R}^N \longrightarrow \mathbb{R}^m$ is a continuous mapping.

Example 5.3.6. (Quadratic functions on \mathbb{R}^N). Every $N \times N$ matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2N} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} \end{pmatrix}$$

defines a quadratic function $Q_A : \mathbb{R}^N \longrightarrow \mathbb{R}$, by the formula.

$$Q_A(x) = x \cdot Ax$$

where $x \cdot y$ is the dot product of two vectors. Quadratic functions Q_A are also called quadratic forms. A quadratic function Q_A is a polynomial on \mathbb{R}^N of degree two, and hence it is a continuous function on \mathbb{R}^N .

Example 5.3.7. Consider a quadratic function $Q_A : \mathbb{R}^3 \longrightarrow \mathbb{R}$,

$$Q_A(x) = x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 + 6x_2x_3$$

Find a symmetric matrix A which generated Q_A .

5.4 Linear mappings in normed spaces

Definition 5.4.1. (Linear mapping). Let $(X, |\cdot|_X)$ and $(Y, |\cdot|_Y)$ be two normed spaces. We say $L : X \longrightarrow Y$ is a linear mapping if for any two vectors $x, y \in X$ and a scalar $\lambda \in \mathbb{R}$:

$$L(x+y) = Lx + Ly$$

$$L(\lambda x) = \lambda L x$$

Instead of linear mapping we often say linear operator.

Notation 5.4.2. For linear mappings we usually do not use the brackets around a single argument, i.e. we write Lx instead of L(x).

Definition 5.4.3. (Bounded mapping). Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces. We say a linear mapping $L : X \longrightarrow Y$ is bounded if there exists $M \ge 0$ such that

$$||Lx||_Y \le M ||x||_X, \qquad \forall x \in X \tag{5.1}$$

We shall emphasise that the size of the constant M in Equation (5.1) may depend on the choice of the norms $\|\cdot\|_X$ and $\|\cdot\|_Y$.

Theorem 5.4.4. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces and $L: X \longrightarrow Y$ a linear mapping. Then L is continuous if and only if L is bounded.

Example 5.4.5. (Matrices as bounded linear mappings). Every $m \times N$ matrix $A = (a_{ij}) \in \mathbb{R}^{m \times N}$ defines a linear mapping $A : \mathbb{R}^N \longrightarrow \mathbb{R}^m$, by the formula

$$x \longmapsto Ax$$

It is not difficult to see the mapping A is bounded. For example,

$$||Ax||_2 \le M ||x||_2 \qquad \forall x \in \mathbb{R}^N$$
(5.2)

where $\|\cdot\|_2$ is the Euclidean norm on \mathbb{R}^m and \mathbb{R}^N respectively, and where

$$M = \left(\sum_{i=1}^{m} \sum_{j=1}^{N} |a_{ij}|^2\right)^{\frac{1}{2}}$$

Note that the value of the constant M in Equation (5.1) depends on the choice of the norms in \mathbb{R}^N and \mathbb{R}^m ,

Remark 5.4.6. Note that

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

we define $||A||_1$ as the infimum of all constants C > 0 such that

$$||Ax||_1 \le C|x|$$

Example 5.4.7. (Quadratic functions are continuous). Every $N \times N$ ma-

trix $A = (a_{ij}) \in \mathbb{R}^{N \times N}$ defines the quadratic function

$$QA(x) = x \cdot Ax$$

see Example 5.3.6 Using equation (5.2), it is easy to see that Q_A is continuous at $x_0 = 0$. Indeed, if $||x_n||_2 \longrightarrow 0$ then using the Cauchy-Schwarz inequality and the fact that the linear mapping A is bounded (Example 5.4.5), we obtain

$$|Q_A(x_n)| = |x_n \cdot Ax_n| \le ||x_n||_2 ||Ax_n||_2 \le M ||x_n||_2^2 \longrightarrow 0 = Q_A(0)$$

This means that Q_A is continuous at $x_0 = 0$.

Example 5.4.8. (Integral as a bounded linear function on C([a, b])). Let C([a, b]) be the vector space of continuous functions $f : [a, b] \longrightarrow \mathbb{R}$ with the norm of uniform convergence

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|,$$

proof that the function $\mathcal{I}: C([a, b]) \longrightarrow \mathbb{R}$,

$$\mathcal{I}(f) := \int_{a}^{b} f(x) dx$$

is continuous.

Example 5.4.9. (Differentiation as a linear map from $C^1([a, b])$ into C([a, b])). Let $C^1([a, b])$ be the vector space of continuously differentiable functions $f: [a, b] \longrightarrow \mathbb{R}$. Proof that the mapping

$$\frac{d}{dx}: C^1([a,b]) \longrightarrow C([a,b]);$$

defined by $f \mapsto \frac{d}{dx}f := f'$ is unbounded.